mirror of
https://github.com/medialab-prado/poblacion-dirigida.git
synced 2025-06-08 05:41:28 +02:00
add web template files
This commit is contained in:
parent
7fd949f6fa
commit
898bffcce9
106 changed files with 22120 additions and 0 deletions
185
web_files/test/examples/math.html
Normal file
185
web_files/test/examples/math.html
Normal file
|
@ -0,0 +1,185 @@
|
|||
<!doctype html>
|
||||
<html lang="en">
|
||||
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
|
||||
<title>reveal.js - Math Plugin</title>
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
|
||||
|
||||
<link rel="stylesheet" href="../../css/reveal.css">
|
||||
<link rel="stylesheet" href="../../css/theme/night.css" id="theme">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
||||
<div class="reveal">
|
||||
|
||||
<div class="slides">
|
||||
|
||||
<section>
|
||||
<h2>reveal.js Math Plugin</h2>
|
||||
<p>A thin wrapper for MathJax</p>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>The Lorenz Equations</h3>
|
||||
|
||||
\[\begin{aligned}
|
||||
\dot{x} & = \sigma(y-x) \\
|
||||
\dot{y} & = \rho x - y - xz \\
|
||||
\dot{z} & = -\beta z + xy
|
||||
\end{aligned} \]
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>The Cauchy-Schwarz Inequality</h3>
|
||||
|
||||
<script type="math/tex; mode=display">
|
||||
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
|
||||
</script>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>A Cross Product Formula</h3>
|
||||
|
||||
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
|
||||
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
|
||||
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
|
||||
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
|
||||
\end{vmatrix} \]
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
|
||||
|
||||
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>An Identity of Ramanujan</h3>
|
||||
|
||||
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
|
||||
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
|
||||
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>A Rogers-Ramanujan Identity</h3>
|
||||
|
||||
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
|
||||
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>Maxwell’s Equations</h3>
|
||||
|
||||
\[ \begin{aligned}
|
||||
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
|
||||
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
|
||||
\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
|
||||
\]
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<section>
|
||||
<h3>The Lorenz Equations</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[\begin{aligned}
|
||||
\dot{x} & = \sigma(y-x) \\
|
||||
\dot{y} & = \rho x - y - xz \\
|
||||
\dot{z} & = -\beta z + xy
|
||||
\end{aligned} \]
|
||||
</div>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>The Cauchy-Schwarz Inequality</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
|
||||
</div>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>A Cross Product Formula</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
|
||||
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
|
||||
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
|
||||
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
|
||||
\end{vmatrix} \]
|
||||
</div>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
|
||||
</div>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>An Identity of Ramanujan</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
|
||||
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
|
||||
{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
|
||||
</div>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>A Rogers-Ramanujan Identity</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
|
||||
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
|
||||
</div>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
<h3>Maxwell’s Equations</h3>
|
||||
|
||||
<div class="fragment">
|
||||
\[ \begin{aligned}
|
||||
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
|
||||
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
|
||||
\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
|
||||
\]
|
||||
</div>
|
||||
</section>
|
||||
</section>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<script src="../../lib/js/head.min.js"></script>
|
||||
<script src="../../js/reveal.js"></script>
|
||||
|
||||
<script>
|
||||
|
||||
Reveal.initialize({
|
||||
history: true,
|
||||
transition: 'linear',
|
||||
|
||||
math: {
|
||||
// mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
|
||||
config: 'TeX-AMS_HTML-full'
|
||||
},
|
||||
|
||||
dependencies: [
|
||||
{ src: '../../lib/js/classList.js' },
|
||||
{ src: '../../plugin/math/math.js', async: true }
|
||||
]
|
||||
});
|
||||
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
Loading…
Add table
Add a link
Reference in a new issue